I B.Tech - I Semester - Regular Examinations - JANUARY 2024

LINEAR ALGEBRA \& CALCULUS

(Common for ALL BRANCHES)

Duration: 3 hours

Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
4. All parts of Question paper must be answered in one place.

BL - Blooms Level
CO - Course Outcome
PART - A

		BL	CO
1.a)	Estimate the value of a, if the rank of the matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & a & 4 \\ 1 & -1 & 1\end{array}\right]$ is 2	L2	CO 1
1.b)	If the initial approximation to the solution of $10 x+2 y+z=9,2 x+20 y-2 z=-44,-2 x+3 y+10 z=22$ $(x, y, z)=(0,0,0)$ then find the first approximation by using Gauss-Seidel iteration method.	L3	C04
1.c)	If the eigen values of $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$ are $2,3 \& 6$ then predict the eigen values of A^{-1}.	L2	CO 2
1.d)	Write down the quadratic form $X^{\tau} A X$ corresponding to the symmetric matrix $A=\left[\begin{array}{ccc}1 & 3 & -5 \\ 3 & 2 & 0 \\ -5 & 0 & -4\end{array}\right]$	L2	CO 4
1.e)	Discuss the applicability of Cauchy's mean value theorem for $\begin{aligned} & f(x)=\left\{\begin{array}{c} -x, \text { if }-4<x<0 \\ x, \end{array} \text { if } 0 \leq x<4\right. \\ & {[-4,4]} \end{aligned} \text { and } \mathrm{g}(x)=x^{2} \text { in }$	L2	CO 3

1.f)	State the Maclaurin's series expansion of $f(x)$ about $x=0$.	L 1	CO 3
$1 . \mathrm{g})$	Estimate $\lim _{\substack{x \rightarrow 1 \\ y \rightarrow 2}} \frac{2 x^{2} y}{x^{2}+y^{2}+1}$	L 2	CO 1
1.h)	Estimate the first and second order partial derivatives of $f(x, y)=a x^{2}+2 h x y+b y^{2}$	L 2	CO 1
1.i)	Write the limits by changing the order of integration of the double integral $\int_{0}^{1} \int_{y}^{y^{2}}(x+y) d x d y \quad$ with the help of region of integration.	LO	CO
$1 . \mathrm{j})$	Calculate the double integral $\int_{0}^{1} \int_{0}^{1} x y d y d x$.	L 3	CO 5

PART - B

			BL	CO	Max. Marks
UNIT-I					
2	a)	Discover the rank of the matrix $\left[\begin{array}{cccc}1 & 1 & -1 & 1 \\ -1 & 1 & -3 & -3 \\ 1 & 0 & 1 & 2 \\ 1 & -1 & 3 & 3\end{array}\right]$ by reducing the matrix to Echelon form.	L3	CO 2	5 M
	b)	Solve the system of non-homogeneous linear equations $5 x_{1}+3 x_{2}+7 x_{3}=4$, $3 x_{1}+26 x_{2}+2 x_{3}=9$ and $7 x_{1}+2 x_{2}+10 x_{3}=5$	L3	CO 2	5 M
OR					
3	a)	Apply Gauss Jordan method to find the inverse of the matrix $\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1\end{array}\right]$	L3	CO 2	5 M
	b)	Make use of Jacobi's method to find first five iterations of the following system of equations $20 x+y-2 z=17$, $3 x+20 y-z=-18,2 x-3 y+20 z=25$	L3	CO 2	5 M

UNIT-II					
4	a)	Calculate the characteristic roots and characteristic vectors of the matrix $A=\left[\begin{array}{ccc} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{array}\right]$	L3	CO 2	5 M
	b)	Make use of the eigen values of matrix of the quadratic form to discuss the rank and nature of the quadratic form $-x_{1}^{2}-4 x_{2}^{2}-x_{3}^{2}+4 x_{1} x_{2}-4 x_{2} x_{3}-2 x_{1} x_{3}$	L4	CO4	5 M
OR					
5	a)	Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$ and hence find A^{4}.	L3	CO2	5 M
	b)	Use Diagonalization to find the matrix A, if the eigen values of a matrix A of order 3 and the corresponding eigen vectors are $0,3,15 \&\left[\begin{array}{l}1 \\ 2 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}2 \\ -2 \\ 1\end{array}\right]$ respectively.	L3	CO 2	5 M
UNIT-III					
6	a)	Check the applicability of Rolle's theorem, if applicable verify theorem for the function $\log \left\{\frac{x^{2}+a b}{x(a+b)}\right\}$ in $[a, b]$, where $0<a<b$	L3	CO5	5 M
	b)	Construct the series expansion of $f(x)=\log (1+x)$ in powers of x up to third degree terms.	L3	CO5	5 M
OR					
7	a)	Apply mean value theorem to prove that $\begin{aligned} & \frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}}(0<a<b) \\ & \text { and } \quad \text { hence } \quad \text { deduce that } \\ & \frac{\pi}{4}+\frac{3}{25}<\tan ^{-1} \frac{4}{3}<\frac{\pi}{4}+\frac{1}{6} . \end{aligned}$	L3	CO5	5 M

	b)	Discover the series expansion of $f(x)=\operatorname{Sin} x$ in powers of $x-\frac{\pi}{4}$	L3	CO5	5 M
UNIT-IV					
8	a)	Point out the functions $u=x e^{y} \sin z, v=x e^{y} \cos z, w=x^{2} e^{2 y}$ are functionally dependent or not. If functionally dependent, find the relation between them.	L3	CO5	5 M
	b)	Discover the nature of stationary points and then find extreme values of $x^{3}+3 x y^{2}-15 x^{2}-15 y^{2}+72 x$	L3	CO3	5 M
OR					
9	a)	Make use of functional determinant to show that $\quad \frac{\partial(u, v)}{\partial(r, \theta)}=6 r^{3} \sin 2 \theta \quad$ where $u=x^{2}-2 y^{2}, v=2 x^{2}-y^{2}$ and $x=r \cos \theta, y=r \sin \theta$	L3	CO5	5 M
	b)	Divide twenty-four into three parts such that the continued product of the first part, square of the second part and the cube of third part is maximum.	L4	CO3	5 M
UNIT-V					
10	a)	By changing the order of integration, evaluate the double integral $\int_{0}^{2} \int_{e^{x}}^{e} \frac{1}{\log y} d y d x$	L3	CO5	5 M
	b)	Calculate the volume of the solid bounded by the planes $x=0, y=0, z=0 \text { and } x+y+z=1 \text {. }$	L3	CO3	5 M
OR					
11	a)	Calculate the triple integral $\int_{-1}^{1} \int_{0}^{2} \int_{1}^{3} x^{2} y^{2} z^{3} d x d y d z$	L3	CO5	5 M
	b)	Discover the area enclosed by the pair of curves $y^{2}=x$ and $y=x^{2}$ using double integration.	L3	CO3	5 M

