I B.Tech - I Semester – Regular Examinations - JANUARY 2024

LINEAR ALGEBRA & CALCULUS (Common for ALL BRANCHES)

Duration:	3	hours
-----------	---	-------

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.
- BL Blooms Level

PART – A

		BL	CO
1.a)	Estimate the value of a , if the rank of the matrix	L2	CO1
	$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & a & 4 \end{bmatrix} $ is 2		
	$A = \begin{bmatrix} 0 & a & 4 \end{bmatrix}$ is 2		
1 b)	$\begin{bmatrix} 1 & -1 & 1 \end{bmatrix}$	L3	C04
1.0)	If the initial approximation to the solution of	LJ	C04
	10x + 2y + z = 9, $2x + 20y - 2z = -44$, $-2x + 3y + 10z = 22$ is		
	(x, y, z) = (0, 0, 0) then find the first approximation by		
	using Gauss-Seidel iteration method.		
1.c)		L2	CO2
	If the eigen values of $A = \begin{bmatrix} -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ are 2, 3 & 6 then		
	predict the eigen values of A^{-1} .		
1.d)	Write down the quadratic form $X^T A X$ corresponding to	L2	CO4
	$\begin{bmatrix} 1 & 3 & -5 \end{bmatrix}$		
	the symmetric matrix $A = \begin{bmatrix} 1 & 3 & -5 \\ 3 & 2 & 0 \\ 5 & 0 & -4 \end{bmatrix}$		
	$\begin{bmatrix} -5 & 0 & -4 \end{bmatrix}$		
1.e)	Discuss the applicability of Cauchy's mean value	L2	CO3
	theorem for		
	f(x) = (-x, if - 4 < x < 0)		
	$f(x) = \begin{cases} -x, & if - 4 < x < 0 \\ x, & if 0 \le x < 4 \end{cases} \text{ and } g(x) = x^2 \text{ in}$		
	[-4, 4]		

Max. Marks: 70

CO – Course Outcome

1.f)	State the Maclaurin's series expansion of $f(x)$ about	L1	CO3
	x = 0.		
1.g)	$2x^2y$	L2	CO1
	Estimate $\lim_{\substack{x \to 1 \ y \to 2}} \frac{2x^2 y}{x^2 + y^2 + 1}$		
1.h)	Estimate the first and second order partial derivatives	L2	CO1
	of $f(x, y) = ax^{2} + 2hxy + by^{2}$		
1.i)	Write the limits by changing the order of integration of	L2	CO5
	the double integral $\int_0^1 \int_y^{y^2} (x+y) dx dy$ with the		
	help of region of integration.		
1.j)	Calculate the double integral $\int_0^1 \int_0^1 xy dy dx$.	L3	CO5

PART – B

			BL	CO	Max. Marks			
		UNIT-I						
2	a)	Discover the rank of the matrix $\begin{bmatrix} 1 & 1 & -1 & 1 \\ -1 & 1 & -3 & -3 \\ 1 & 0 & 1 & 2 \\ 1 & -1 & 3 & 3 \end{bmatrix}$ by reducing the matrix to Echelon form.	L3	CO2	5 M			
	b)	Solve the system of non-homogeneous linear equations $5x_1 + 3x_2 + 7x_3 = 4$, $3x_1 + 26x_2 + 2x_3 = 9$ and $7x_1 + 2x_2 + 10x_3 = 5$	L3	CO2	5 M			
		OR						
3	a)	Apply Gauss Jordan method to find the inverse of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \\ 4 & 2 & 1 \end{bmatrix}$	L3	CO2	5 M			
	b)	Make use of Jacobi's method to find first five iterations of the following system of equations $20x + y - 2z = 17$, 3x + 20y - z = -18, $2x - 3y + 20z = 25$	L3	CO2	5 M			

UNIT-II						
4	a)	Calculate the characteristic roots and	L3	CO2	5 M	
		characteristic vectors of the matrix				
		$\begin{vmatrix} A = & -6 & 7 & -4 \\ 2 & -4 & 3 \end{vmatrix}$				
	b)	e	L4	CO4	5 M	
		the quadratic form to discuss the rank and				
		nature of the quadratic form				
		$ -x_1^2 - 4x_2^2 - x_3^2 + 4x_1x_2 - 4x_2x_3 - 2x_1x_3 $				
		OR	10		5.2.6	
5	a)	Verify Cayley-Hamilton theorem for the $\begin{bmatrix} 1 & 0 & 2 \end{bmatrix}$	L3	CO2	5 M	
		matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \end{bmatrix}$ and hence find A^4 .				
		$\begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix}$ and hence that T .				
	b)		L3	CO2	5 M	
	,	the eigen values of a matrix A of order 3				
		and the corresponding eigen vectors are				
		$0,3,15 \& \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\-2 \end{bmatrix}$ respectively.				
		[0,3,15 & 2], [1], [-2] respectively.				
		UNIT-III				
6	a)	Check the applicability of Rolle's theorem,	L3	CO5	5 M	
		if applicable verify theorem for the function				
		$\log\left\{\frac{x^2 + ab}{x(a+b)}\right\}$ in [a,b], where $0 < a < b$				
	b)	Construct the series expansion of	L3	CO5	5 M	
		$f(x) = \log(1+x)$ in powers of x up to third				
		degree terms.				
OR						
7	a)	Apply mean value theorem to prove that	L3	CO5	5 M	
		$\frac{b-a}{1+b^2} < \tan^{-1}b - \tan^{-1}a < \frac{b-a}{1+a^2} \ (0 < a < b)$				
		and hence deduce that				
		$\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}.$				

	b)	1	L3	CO5	5 M		
		$f(x) = Sin x$ in powers of $x - \frac{\pi}{4}$					
UNIT-IV							
8	a)	Point out the functions $u = x e^{y} sin z$, $v = x e^{y} cos z$, $w = x^{2} e^{2y}$	L3	CO5	5 M		
		are functionally dependent or not. If functionally dependent, find the relation between them.					
	b)	Discover the nature of stationary points and then find extreme values of $x^3 + 3xy^2 - 15x^2 - 15y^2 + 72x$	L3	CO3	5 M		
		OR		<u> </u>			
9	a)	Make use of functional determinant to show	L3	CO5	5 M		
		that $\frac{\partial(u,v)}{\partial(r,\theta)} = 6r^3 \sin 2\theta$ where					
		$u = x^2 - 2y^2$, $v = 2x^2 - y^2$ and $x = r\cos\theta$, $y = r\sin\theta$					
	b)	Divide twenty-four into three parts such that	L4	CO3	5 M		
	the continued product of the first part,						
		square of the second part and the cube of third part is maximum.					
		UNIT-V					
10	a)	By changing the order of integration, evaluate the double integral $\int_0^2 \int_{e^x}^e \frac{1}{\log y} dy dx$	L3	CO5	5 M		
	b)	Calculate the volume of the solid bounded	13	CO3	5 M		
		by the planes	LJ		5 111		
		x = 0, y = 0, z = 0 and $x + y + z = 1$.					
		OR		<u> </u>			
11	a)	Calculate the triple integral	L3	CO5	5 M		
		$\int_{-1}^{1} \int_{0}^{2} \int_{1}^{3} x^{2} y^{2} z^{3} dx dy dz.$					
	b)	Discover the area enclosed by the pair of	L3	CO3	5 M		
		curves $y^2 = x$ and $y = x^2$ using double					
		integration.					